
ipgen - Interactive Packet Generator

This presentation material was written by
ryo@iij.ad.jp

Presented by msaitoh@n.o

https://github.com/iij/ipgen/

What is ipgen?

• ipgen is a packet generator, benchmark,
performance measurement tool.

Motivation
• We are developing router.

• We must do performance test over and over
to tuning IP forwarding and to do tests.

• in so doing, we use various benchmark
programs/boxes.

• ftp, ping –f, iperf, ttcp, nuttcp, etc...
– simple and convenient :-)

– sometime they cannot achieve enough
performance depending on hardware and/or
network stack implementation :-(

– cannot get good accuracy and detailed
information of results :-(

• Proprietary router tester products (SPIRENT
communications, Ixia, Artiza Networks, etc...)
– High reliable benchmarks :-)

– very expensive :-(

– device busy. most of the time, someone use it.
(EBUSY) :-(

• Want to test easily on my desk!

– It’s required to speed-up NetBSD MP network
stack project.

• with reasonable performance, good accuracy
and detailed information of results

ryo@ made it.

example

ipgen -T igb1,66:77:88:99:aa:bb -R igb2,00:11:22:33:44:55

loopback test bridge test (L2 forwarding)

example

ipgen -T igb1,198.18.0.2,198.18.0.1/24 -R igb2,192.18.1.2,192.18.1.1/24

L3 forwarding test

using FreeBSD netmap
Luigi-san has already written simple 'pkt-gen'
program in FreeBSD:tools/tools/netmap

I wrote using examples from it :)

copy and paste is the best way to
programming.

Features

• Interactive UI

• Drop/Duplicate/Reorder counter

• Multiple flows support

• Inter Packet Gap support

• RFC2544 test

• IPv6 support

drop/duplicate/reorder counter
each packet has a sequence.
ipgen has a bitmap flag internally.

 #seq received bitmap

 --- ---

 0: 111

 50: 111

 100: 1111111111111111111100000000000000000000000000000

 150: 000

 200: 000

 250: 000

 :

 :

#105→#106→#108→#109→#110→

 100: 1111111011111000000000000000000000000000000000000

 ^

 #107 dropped?

#105→#106→#108→#109→#110→#107→#111…

                              ~~~~ 

  100: 1111111111111000000000000000000000000000000000000 

              ^ 

              #107 not droped. (reordered) 

 

 

#105→#106→#108→#109→#110→#107→#111→#108→ 

            ~~~~                          ~~~~ 

 100: 1111111111110000000000000000000000000000000000000

 ^

 #108 duplicate!

ipgen check reordering with
considering each flow

[A→B #1] [A→B #1]

[A→C #2] [A→B #3]

[A→B #3] → [DUT] → [A→B #5]

[A→C #4] [A→C #2]

[A→B #5] [A→C #4]

[A→C #6] [A→C #6]

#1→#3→#5→#2→#4→#6 ... is this reordered?

this is reordered totally, but
this is not reordered per flow.

ipgen check reordering with
considering each flow

[A→B #1 ##1] [A→B #1 ##1]

[A→C #2 ##1] [A→B #3 ##2]

[A→B #3 ##2] → [DUT] → [A→B #5 ##3]

[A→C #4 ##2] [A→C #2 ##1]

[A→B #5 ##3] [A→C #4 ##2]

[A→C #6 ##3] [A→C #6 ##3]

##1→##2→##3→##1→##2→##3

for each flow, not reordered.

Burst transmission problem
• E.g., sending packets with 1,000 pps

– if the granularity of the internal timer is 1 sec., 1,000 packets are sent
in bulk at the beginning in each time slot and remaining period of the
slot will be idle

• Finer timer solves the problem?
– No. 1,000 Hz timer can solve the problem on 1,000 pps, but cannot

solve on 100,000 pps

• More finer timer?

Inter Packet Gap
(aka Inter Frame Gap)

• What is IPG?

Ethernet devices must allow a minimum idle
period between transmission of Ethernet packets.
(from wikipedia)

Inter Packet Gap is the idle period.

on most ethernet device, IPG is configurable.

also Intel's GbE can!

but no API to configure IPG from userland.
I wrote small patch!

This patch can control IPG by sysctl(8)

sysctl dev.igb | grep tipg

dev.igb.5.tipg: 8

dev.igb.4.tipg: 8

dev.igb.3.tipg: 8

dev.igb.2.tipg: 8

dev.igb.1.tipg: 8

dev.igb.0.tipg: 8

Controlling IPG can provide steady
traffic

RFC2544 test

Q. What is RFC2544 test?

A. SEE RFC2544 :)

The objective of the test is to determine
the minimum interval between bursts which
the DUT can process with no frame loss.

An example of binary search. If packet drops
happen, the offered traffic decreases. If no
packet is lost, the offered traffic increases.

ipgen supports RFC2544 test mode.

It does binary search to avoid measuring with
every traffic (pps)

Result of ipgen RFC2544 test mode
ipgen --rfc2544 -T igb2,00:60:e0:5c:4e:e7 ＼
 -R igb4,00:60:e0:5c:4e:e5

CONCLUSION

• We made easy-to-use packet generator

• RFC2544 test supported

• netmap is very cool!
I hope someone to port netmap to NetBSD :)

